Theorem Pertaining To Some Product of Special Functions

${ }^{1}$ Neeti Ghiya, ${ }^{2}$ N. Shivakumar, ${ }^{3}$ Vidya Patil
${ }^{1,2,3}$ R V College of Engineering Bangalore, India

Abstract

The aim of this paper is to establish a theorem associated with the product of the Fox's H-function, the multivariable \mathbf{H}-function and the general class of polynomials. The results of this theorem are unified in nature and producing a very large number of analogous results (new and known) involving simpler special functions and polynomials (of one or more variables) as special cases of our result.

Keywords: H-function, multi variable H-function, general class of Polynomials (Srivastava Polynomial).

1. INTRODUCTION

The series representation of Fox's H-function ([1], [2])

$$
\mathrm{H}_{\mathrm{P}_{1}, \mathrm{Q}_{1}}^{\mathrm{M}_{1}, \mathrm{~N}_{1}}\left[\mathrm{x} \left\lvert\, \begin{array}{cc}
\left(\begin{array}{cc}
\mathrm{e}_{\mathrm{P}}, & \left.\mathrm{E}_{\mathrm{P}}\right) \\
\left(\mathrm{f}_{\mathrm{Q}},\right. & \left.\mathrm{F}_{\mathrm{Q}}\right)
\end{array}\right]=\sum_{\mathrm{G}=0}^{\infty} \sum_{\mathrm{g}=1}^{\mathrm{M}_{1}}(-1)^{\mathrm{G}} \Phi\left(\mathrm{~L}_{\mathrm{G}}\right) \mathrm{x}^{\mathrm{L}_{\mathrm{G}}}\left[\mathrm{G}!\mathrm{F}_{\mathrm{g}}\right]^{-1},, ~
\end{array}\right.\right.
$$

where $\Phi\left(\mathrm{L}_{\mathrm{G}}\right)=\frac{\prod_{\mathrm{j} 1, \mathrm{j}, \mathrm{G}, \mathrm{G}}^{\mathrm{M}_{1}} \Gamma\left(\mathrm{f}_{\mathrm{j}}-\mathrm{F}_{\mathrm{j}} \mathrm{L}_{\mathrm{G}}\right) \prod_{j=1}^{\mathrm{N}_{1}} \Gamma\left(1-\mathrm{e}_{\mathrm{j}}+\mathrm{E}_{\mathrm{j}} \mathrm{L}_{\mathrm{G}}\right)}{\prod_{\mathrm{j}=\mathrm{M}_{1}+1}^{\mathrm{Q}_{1}} \Gamma\left(1-\mathrm{f}_{\mathrm{j}}+\mathrm{F}_{\mathrm{j}} \mathrm{L}_{\mathrm{G}}\right) \prod_{\mathrm{j}=\mathrm{N}_{1}+1}^{\mathrm{P}_{1}} \Gamma\left(\mathrm{e}_{\mathrm{j}}-\mathrm{E}_{\mathrm{j}} \mathrm{L}_{\mathrm{G}}\right)}, \quad \mathrm{L}_{\mathrm{G}}=\frac{\left(\mathrm{f}_{\mathrm{g}}+\mathrm{G}\right)}{\mathrm{F}_{\mathrm{g}}}$.
The multivariable H-function was defined by H. M. Srivastava and R. Panda [5]

$=\left[\frac{1}{(2 \pi \omega)^{\mathrm{r}}}\right] \int_{\mathrm{L}_{1}} \cdots \int_{\mathrm{L}_{\mathrm{r}}} \phi_{1}\left(\xi_{1}\right) \cdots \phi_{\mathrm{r}}\left(\xi_{\mathrm{r}}\right) \psi\left(\xi_{1}, \ldots, \xi_{\mathrm{r}}\right) \mathrm{z}_{1}{ }^{\xi_{1} \cdots \mathrm{z}_{\mathrm{r}}}{ }^{\xi_{\mathrm{r}}} \mathrm{d} \xi_{1} \cdots \mathrm{~d} \xi_{\mathrm{r}^{\prime}}$
where $\omega=\sqrt{-1}$,

$\psi\left(\xi_{1}, \cdots, \xi_{r}\right)=\frac{\prod_{j=1}^{n} \Gamma\left(1-a_{j}+\sum_{i=1}^{\mathrm{r}} \alpha_{j}^{(i)} \xi_{\mathrm{i}}\right)}{\Pi_{\mathrm{j}=\mathrm{n}+1}^{\mathrm{p}} \Gamma\left(\mathrm{a}_{\mathrm{j}}-\sum_{\mathrm{i}=1}^{\mathrm{r}} \alpha_{\mathrm{j}}^{(\mathrm{i}} \xi_{\mathrm{i}}\right) \prod_{\mathrm{j}=1}^{\mathrm{q}} \Gamma\left(1-\mathrm{b}_{\mathrm{j}}+\sum_{\mathrm{i}=1}^{\mathrm{r}} \beta_{\mathrm{j}}^{(\mathrm{i})} \xi_{\mathrm{i}}\right)}$,
$\left|\arg \left(\mathrm{z}_{\mathrm{i}}\right)\right|<\frac{1}{2} \Omega_{\mathrm{i}} \Pi$,
where $\quad \Omega_{\mathrm{i}}=\sum_{\mathrm{j}=1}^{\mathrm{n}} \alpha_{\mathrm{j}}^{(\mathrm{i})}-\sum_{\mathrm{j}=\mathrm{n}+1}^{\mathrm{p}} \alpha_{\mathrm{j}}^{(\mathrm{i})}-\sum_{\mathrm{j}=1}^{\mathrm{q}} \beta_{\mathrm{j}}^{(\mathrm{i})}+\sum_{\mathrm{j}=1}^{\mathrm{n}_{\mathrm{i}}} \gamma_{\mathrm{j}}^{(\mathrm{i})}-\sum_{\mathrm{j}=\mathrm{n}_{\mathrm{i}}+1}^{\mathrm{p}_{\mathrm{i}}} \gamma_{\mathrm{j}}^{(\mathrm{i})}+\sum_{\mathrm{j}=1}^{\mathrm{m}_{\mathrm{i}}} \delta_{\mathrm{j}}^{(\mathrm{i})}-\sum_{\mathrm{j}=\mathrm{m}_{\mathrm{i}}+1}^{\mathrm{q}_{\mathrm{i}}} \delta_{\mathrm{j}}^{(\mathrm{i})}>0$.
Srivastava has defined and introduced the general polynomials [3]
$S_{n_{1}, \ldots, n_{s}}^{\mathrm{m}_{1}, \ldots, \mathrm{~m}_{\mathrm{s}}}=\sum_{\mathrm{k}_{1=0}}^{\left[\frac{n_{1}}{\mathrm{~m}_{1}}\right]}, \ldots, \sum_{\mathrm{k}_{\mathrm{s}}=0}^{\left[\frac{\mathrm{n}_{\mathrm{s}}}{m_{\mathrm{s}}}\right]} \frac{\left(-\mathrm{n}_{1}\right)_{\mathrm{m}_{1} \mathrm{k}_{1}}}{\mathrm{k}_{1!}} \ldots \frac{\left(-\mathrm{n}_{\mathrm{s}}\right)_{\mathrm{m}_{\mathrm{s}} \mathrm{k}_{\mathrm{s}}}}{\mathrm{k}_{\mathrm{s}}!} \mathrm{A}\left[\mathrm{n}_{1} \mathrm{k}_{1}, \ldots, \mathrm{n}_{\mathrm{s}} \mathrm{k}_{\mathrm{s}}\right] \mathrm{x}_{1}^{\mathrm{k}_{1}}, \ldots, \mathrm{x}_{\mathrm{s}}$,

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online)
Vol. 3, Issue 2, pp: (33-36), Month: October 2015 - March 2016, Available at: www.researchpublish.com
where $n_{i}=0,1,2, \ldots, \forall i=\left(1, \ldots, s ; m_{1}, \ldots, m_{s}\right)$ arbitrary positive integers and the coefficients are $A\left[n_{1} k_{1}, \ldots, n_{s} k_{s}\right]$ are arbitrary constants, real or complex. On suitably specializing the coefficients $A\left[n_{1} k_{1}, \ldots, n_{s} k_{s}\right], S_{n_{1}, \ldots, n_{s}}^{m_{1}, \ldots, m_{s}}\left[x_{1}, \ldots, x_{s}\right]$ yields a number of known polynomials as its special cases. These include, among others, the Hermite polynomials, the Jacobi polynomials, the Lagurre polynomials, the Bessel's polynomials and several others.

2. MAIN THEOREM

Theorem: Let $\alpha, \beta, \gamma, \lambda, \rho, \xi, u_{i}, \rho_{i}, h_{j}, \theta_{j} \in R$, where $(i=1, \ldots, s),(j=1, \ldots, r)$ and if $(1-\mathrm{x})^{\alpha+\beta-\gamma-\frac{1}{2}}{ }_{2} \mathrm{~F}_{1}[2 \alpha, 2 \beta ; 2 \gamma ; \mathrm{x}]=\sum_{\mathrm{r}=0}^{\infty} \beta_{\mathrm{r}} \mathrm{x}^{\mathrm{r}}$
then there hold the formula
$\int_{0}^{1} x^{\lambda}\left(x^{k}+c\right)^{-\rho}{ }_{2} \mathrm{~F}_{1}[\alpha, \beta ; \gamma ; x]_{2} F_{1}\left[\gamma-\alpha+\frac{1}{2}, \gamma-\beta+\frac{1}{2} ; \gamma+1 ; x\right] S_{n_{1}, \ldots, n_{s}}^{m_{1}, \ldots, m_{s}}\left[c_{1} x^{u_{1}}\left(x^{k}+c\right)^{-\rho_{1}}, \ldots, c_{s} x^{u_{s}}\left(x^{k}+c\right)^{-\rho_{s}}\right]$

$=\sum_{\mathrm{k}_{1}=0}^{\left[\frac{n_{1}}{\mathrm{~m}_{1}}\right]}, \ldots, \sum_{\mathrm{k}_{\mathrm{s}=0}}^{\left[\frac{\mathrm{n}_{\mathrm{s}}}{\mathrm{m}_{\mathrm{s}}}\right]} \frac{\left(-\mathrm{n}_{1}\right)_{\mathrm{m}_{1} k_{1}}}{\mathrm{k}_{1!}} \ldots \frac{\left(-\mathrm{n}_{\mathrm{s}}\right)_{\mathrm{m}_{\mathrm{s}} \mathrm{k}_{\mathrm{s}}}}{\mathrm{k}_{\mathrm{s}}!} \mathrm{A}\left[\mathrm{n}_{1} \mathrm{k}_{1}, \ldots, \mathrm{n}_{\mathrm{s}} \mathrm{k}_{\mathrm{s}}\right] \sum_{\mathrm{G}=0}^{\infty} \sum_{\mathrm{g}=1}^{\mathrm{M}_{1}}(-1)^{\mathrm{G}} \phi\left(\mathrm{L}_{\mathrm{G}}\right) \mathrm{z}^{\mathrm{L}_{\mathrm{G}}}\left[\mathrm{G}!\mathrm{F}_{\mathrm{g}}\right]^{-1}$

$\left(1-\rho-\xi L_{G}-\sum_{i=1}^{s} \rho_{i} k_{i} ; \theta_{1}, \cdots, \theta_{r}, 1\right) \quad\left(-\lambda-r-h L_{G}-\sum_{i=1}^{s} u_{i} k_{i} ; h_{1}, h_{2}, \cdots, h_{r}, 0\right) \quad ;$
$\left(1-\rho-\xi \mathrm{L}_{\mathrm{G}}-\sum_{\mathrm{i}=1}^{\mathrm{s}} \rho_{\mathrm{i}} \mathrm{k}_{\mathrm{i}} ; \theta_{1}, \cdots, \theta_{\mathrm{r}}, \quad 0\right) \quad\left(-1-\lambda-\mathrm{r}-\mathrm{hL}_{\mathrm{G}}-\sum_{\mathrm{i}=1}^{\mathrm{s}} \mathrm{u}_{\mathrm{i}} \mathrm{k}_{\mathrm{i}} ; \mathrm{h}_{1}, \mathrm{~h}_{2}, \cdots, \mathrm{~h}_{\mathrm{r}}, 0\right) ;$

$$
\left.\left.\begin{array}{c}
\left(\mathrm{c}_{\mathrm{j}}^{\prime}, \gamma_{\mathrm{j}}^{\prime}\right)_{1, \mathrm{p}_{1}} ; \ldots ;\left(\mathrm{c}_{\mathrm{j}}^{(\mathrm{r})}, \gamma_{\mathrm{j}}^{(\mathrm{r})}\right)_{1, \mathrm{p}_{\mathrm{r}}} ; \tag{2.2}\\
\left(\mathrm{d}_{\mathrm{j}}^{\prime}, \delta_{\mathrm{j}}^{\prime}\right)_{1, \mathrm{q}_{1}} ; \ldots ;\left(\mathrm{d}_{\mathrm{j}}^{(\mathrm{r})}, \delta_{\mathrm{j}}^{(\mathrm{r})}\right)_{1, \mathrm{q}_{\mathrm{r}}} ;
\end{array}\right](0,1)\right],
$$

provided that:
$\rho_{\mathrm{i}}>0, \quad \mathrm{u}_{\mathrm{i}}>0, \quad \mathrm{k}_{\mathrm{i}}>0,(\mathrm{i}=1, \ldots, \mathrm{~s}) ; \theta_{\mathrm{j}}>0, \quad \mathrm{~h}_{\mathrm{j}}>0,(\mathrm{j}=1, \ldots, \mathrm{r}) ; \mathrm{h}>0, \quad \xi>0, \quad-\frac{1}{2}<(\gamma-\alpha-\beta)<\frac{1}{2}$,
$\operatorname{Re}\left(1+\sum_{i=1}^{r} \frac{h_{i}}{d_{j}^{(i)}} \frac{\delta_{j}^{(i)}}{\delta_{j}^{(i)}}\right)>0 \quad$ and $\quad\left|\arg \left(z_{i}\right)\right|<\frac{1}{2} \Omega_{i} \Pi, \quad \Omega_{i}>0$,
where $\Omega_{\mathrm{i}}=\sum_{\mathrm{j}=1}^{\mathrm{n}} \alpha_{\mathrm{j}}^{(\mathrm{i})}-\sum_{\mathrm{j}=\mathrm{n}+1}^{\mathrm{p}} \alpha_{\mathrm{j}}^{(\mathrm{i})}-\sum_{\mathrm{j}=1}^{\mathrm{q}} \beta_{\mathrm{j}}^{(\mathrm{i})}+\sum_{\mathrm{j}=1}^{\mathrm{n}_{\mathrm{i}}} \gamma_{\mathrm{j}}^{(\mathrm{i})}-\sum_{\mathrm{j}=\mathrm{n}_{\mathrm{i}}+1}^{\mathrm{p}_{\mathrm{i}}} \gamma_{\mathrm{j}}^{(\mathrm{i})}+\sum_{\mathrm{j}=1}^{\mathrm{m}_{\mathrm{i}}} \delta_{\mathrm{j}}^{(\mathrm{i})}-\sum_{\mathrm{j}=\mathrm{m}_{\mathrm{i}}+1}^{\mathrm{q}_{\mathrm{i}}} \delta_{\mathrm{j}}^{(\mathrm{i})}>0$.
Proof: We start with Slater result ([7], p.75)
${ }_{2} \mathrm{~F}_{1}[\alpha, \beta ; \gamma ; \mathrm{x}]{ }_{2} \mathrm{~F}_{1}\left[\gamma-\alpha+\frac{1}{2}, \gamma-\beta+\frac{1}{2} ; \gamma+1 ; \mathrm{x}\right]=\sum_{\mathrm{r}=0}^{\infty} \frac{\left(\gamma+\frac{1}{2}\right)_{\mathrm{r}}}{(\gamma+1)_{\mathrm{r}}} \beta_{\mathrm{r}} \mathrm{x}_{\mathrm{r}}$,
where β_{r} is given by (2.1)
Now, multiplying both sides of (2.3) by
$x^{\lambda}\left(x^{k}+c\right)^{-p} H_{P_{1}, Q_{1}}^{M_{1}, N_{1}}\left[z x^{h}\left(x^{k}+c\right)^{-\xi}\right] \quad S_{n_{1}, \ldots, n_{s}}^{m_{1}, \ldots m_{s}},\left[c_{1} x^{u_{1}}\left(x^{k}+c\right)^{-\rho_{1}}, \ldots, c_{s} x^{u_{s}}\left(x^{k}+c\right)^{-\rho_{s}}\right]$
 and 1 , we obtain

$$
\begin{aligned}
& \int_{0}^{1} x^{\lambda}\left(x^{k}+c\right)^{-\rho}{ }_{2} F_{1}[\alpha, \beta ; \gamma ; x]_{2} F_{1}\left[\gamma-\alpha+\frac{1}{2}, \gamma-\beta+\frac{1}{2} ; \gamma+1 ; x\right] S_{n_{1}, \ldots, n_{s}}^{m_{1}, \ldots, m_{s}}\left[c_{1} x^{u_{1}}\left(x^{k}+c\right)^{-\rho_{1}}, \ldots, c_{s} x^{u_{s}}\left(x^{k}+c\right)^{-\rho_{s}}\right]
\end{aligned}
$$

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online)
Vol. 3, Issue 2, pp: (33-36), Month: October 2015 - March 2016, Available at: www.researchpublish.com

$$
\begin{align*}
& =\int_{0}^{1} x^{\lambda}\left(x^{k}+c\right)^{-\rho} \sum_{r=0}^{\infty} \frac{\left(\gamma+\frac{1}{2}\right)_{r}}{(\gamma+1)_{r}} \beta_{r} x^{r} S_{n_{1}, \ldots, n_{s}}^{m_{1}, \ldots, n_{s}}\left[c_{1} x^{u_{1}}\left(x^{k}+c\right)^{-\rho_{1}}, \ldots, c_{s} x^{u_{s}}\left(x^{k}+c\right)^{-\rho_{s}}\right] H_{P_{1}, Q_{1}}^{M_{1}, N_{1}}\left[z x^{h}\left(x^{k}+c\right)^{-\xi}\right] \tag{2.4}
\end{align*}
$$

Interchanging the order of integration and summations which is permissible under the conditions needed in (2.2), we get the following result after a little simplification say (I):

$$
\begin{aligned}
& I=\sum_{r=0}^{\infty} \frac{\left(\gamma+\frac{1}{2}\right)_{r}}{(\gamma+1)_{r}} \beta_{r} \int_{0}^{1} x^{\lambda+r}\left(x^{k}+c\right)^{-\rho} S_{n_{1}, \ldots, n_{s}}^{m_{1}, \ldots, n_{s}}\left[c_{1} x^{u_{1}}\left(x^{k}+c\right)^{-\rho_{1}}, \ldots, c_{s} x^{u_{s}}\left(x^{k}+c\right)^{-\rho_{s}}\right] H_{P_{1}, Q_{1}}^{M_{1}, N_{1}}\left[z x^{h}\left(x^{k}+c\right)^{-\xi}\right]
\end{aligned}
$$

Using the definitions for general class of polynomials in the series form (1.5), H -function (1.1), and of the multivariable H-function (1.2) on the right of (2.4) and then expressing $\left(x^{\mathrm{k}}+\mathrm{c}\right)^{-\left(\rho+\xi L_{\mathrm{G}}+\sum_{\mathrm{i}=1}^{\mathrm{s}} \rho_{\mathrm{i}} \mathrm{k}_{\mathrm{i}}+\sum_{\mathrm{j}=1}^{\mathrm{r}} \theta_{j} \xi_{j}\right)}$ using Srivastava, Goyal [4] and then finally, evaluating the integral on the right hand side with the help of [6], [8] and [9] we arrive at required result after a little simplification.

3. APPLICATIONS AND SPECIAL CASES

The most general nature of multivariable H -function, H -function and general class of polynomials a number of integrals involving simpler functions can be easily evaluated as special cases of the main theorem:
(a) Take $\gamma=\alpha$ in the main theorem, the value of β_{r} in (2.1) will be equal to $\frac{\left(\beta+\frac{1}{2}\right)_{\mathrm{r}}}{\mathrm{r}!}$ and the result (2.2) produces the following interesting integral:

$$
\begin{aligned}
& \int_{0}^{1} x^{\lambda}\left(x^{k}+c\right)^{-\rho}{ }_{2} F_{1}\left[\alpha+\frac{1}{2}, \beta+\frac{1}{2} ; \alpha+1 ; x\right] S_{n_{1}, \ldots, n_{s}}^{m_{1}, \ldots, m_{s}}\left[c_{1} x^{u_{1}}\left(x^{k}+c\right)^{-\rho_{1}}, \ldots, c_{s} x^{u_{s}}\left(x^{k}+c\right)^{-\rho_{s}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{\mathrm{k}_{1}=0}^{\left[\frac{n_{1}}{\mathrm{~m}_{1}}\right]}, \ldots, \sum_{\mathrm{k}_{\mathrm{s}}=0}^{\left[\frac{\mathrm{n}_{\mathrm{s}}}{\mathrm{~m}_{\mathrm{s}}}\right]} \frac{\left(-\mathrm{n}_{1}\right)_{\mathrm{m}_{1} k_{1}}}{\mathrm{k}_{1!}} \ldots \frac{\left(-\mathrm{n}_{\mathrm{s}}\right)_{\mathrm{m}_{\mathrm{s}} \mathrm{k}_{\mathrm{s}}}}{\mathrm{k}_{\mathrm{s}}!} \mathrm{A}\left[\mathrm{n}_{1} \mathrm{k}_{1}, \ldots, \mathrm{n}_{\mathrm{s}} \mathrm{k}_{\mathrm{s}}\right] \sum_{\mathrm{G}=0}^{\infty} \sum_{\mathrm{g}=1}^{\mathrm{M}_{1}}(-1)^{\mathrm{G}} \varphi\left(\mathrm{~L}_{\mathrm{G}}\right)\left[\mathrm{G}!\mathrm{F}_{\mathrm{g}}\right]^{-1} \mathrm{z}^{L_{\mathrm{G}}}
\end{aligned}
$$

$$
\begin{align*}
& \left(1-\rho-\xi \mathrm{L}_{\mathrm{G}}-\sum_{\mathrm{i}=1}^{\mathrm{s}} \rho_{\mathrm{i}} \mathrm{k}_{\mathrm{i}} ; \theta_{1}, \cdots, \theta_{\mathrm{r}}, \quad 1\right) \quad\left(-\lambda-\mathrm{r}-\mathrm{hL}_{\mathrm{G}}-\sum_{\mathrm{i}=1}^{\mathrm{s}} \mathrm{u}_{\mathrm{i}} \mathrm{k}_{\mathrm{i}} ; \mathrm{h}_{1}, \mathrm{~h}_{2}, \cdots, \mathrm{~h}_{\mathrm{r}}, 0\right) \quad \text {; } \\
& \left(1-\rho-\xi L_{G}-\sum_{i=1}^{s} \rho_{i} k_{i} ; \theta_{1}, \cdots, \theta_{r}, 0\right) \quad\left(-1-\lambda-r-h L_{G}-\sum_{i=1}^{s} u_{i} k_{i} ; h_{1}, h_{2}, \cdots, h_{r}, 0\right) ; \\
& \left.\begin{array}{c}
\left(\mathrm{c}_{\mathrm{j}}^{\prime}, \gamma_{\mathrm{j}}^{\prime}\right)_{1, \mathrm{p}_{1}} ; \ldots ;\left(\mathrm{c}_{\mathrm{j}}^{(\mathrm{r})}, \gamma_{\mathrm{j}}^{(\mathrm{r})}\right)_{1, \mathrm{p}_{\mathrm{r}}} ; \\
\left(\mathrm{d}_{\mathrm{j}}^{\prime}, \delta_{\mathrm{j}}^{\prime}\right)_{1, \mathrm{q}_{1}} ; \ldots ;\left(\mathrm{d}_{\mathrm{j}}^{(\mathrm{r})}, \delta_{\mathrm{j}}^{(\mathrm{r})}\right)_{1, \mathrm{q}_{\mathrm{r}}} ;(0,1)
\end{array}\right] \text {, } \tag{3.1}
\end{align*}
$$

the conditions of validity of (3.1) will follow from those given in (2.2).
(b) Putting $\beta=\alpha+\frac{1}{2}$ then $\alpha+\frac{1}{2}=-\mathrm{v}$ (v is non- negative integer) in (3.1), we get

$$
\int_{0}^{1} x^{\lambda}\left(x^{k}+c\right)^{-p}(1-x)^{v} \quad S_{n_{1}, \ldots, n_{s}}^{\mathrm{m}_{1}, \ldots \mathrm{~m}_{\mathrm{s}}},\left[\mathrm{c}_{1} \mathrm{x}^{\mathrm{u}_{1}}\left(\mathrm{x}^{\mathrm{k}}+\mathrm{c}\right)^{-\mathrm{p}_{1}}, \ldots, \mathrm{c}_{\mathrm{s}} \mathrm{x}^{\mathrm{u}_{\mathrm{s}}}\left(\mathrm{x}^{\mathrm{k}}+\mathrm{c}\right)^{-\mathrm{p}_{\mathrm{s}}}\right] \quad \mathrm{H}_{\mathrm{P}_{1}, \mathrm{Q}_{1}}^{\mathrm{M}_{1}, \mathrm{~N}_{1}}\left[\mathrm{zx}^{\mathrm{h}}\left(\mathrm{x}^{\mathrm{k}}+\mathrm{c}\right)^{-\xi}\right]
$$

$$
\begin{aligned}
& H_{p,}^{0,}, \mathrm{n}_{\mathrm{q}}: \mathrm{m}_{1}, \mathrm{p}_{1}, \mathrm{n}_{1} ; \cdots ; \mathrm{q}_{1} ; \cdots ; \mathrm{m}_{\mathrm{r}}, \mathrm{n}_{\mathrm{r}}\left[\mathrm{q}_{\mathrm{r}}\left[z_{1} \mathrm{x}^{\mathrm{h}_{1}}\left(\mathrm{x}^{\mathrm{k}}+\mathrm{c}\right)^{-\theta_{1}}, \mathrm{z}_{2} \mathrm{x}^{\mathrm{h}_{2}}\left(\mathrm{x}^{\mathrm{k}}+\mathrm{c}\right)^{-\theta_{2}}, \cdots, \mathrm{z}_{\mathrm{r}} \mathrm{x}^{\mathrm{h}_{\mathrm{r}}}\left(\mathrm{x}^{\mathrm{k}}+\mathrm{c}\right)^{-\theta_{\mathrm{r}}}\right] \mathrm{dx}\right. \\
& =\sum_{\mathrm{k}_{1}=0}^{\left[\frac{n_{1}}{m_{1}}\right]}, \ldots \sum_{\mathrm{k}_{\mathrm{s}}=0}^{\left[\frac{n_{s}}{m_{s}}\right]} \frac{\left(-\mathrm{n}_{1}\right)_{\mathrm{m}_{1} k_{1}}}{\mathrm{k}_{1!}} \ldots \frac{\left(-\mathrm{n}_{\mathrm{s}}\right)_{\mathrm{m}_{s}} \mathrm{k}_{\mathrm{s}}}{\mathrm{k}_{\mathrm{s}}!} A\left[n_{1} \mathrm{k}_{1}, \ldots, \mathrm{n}_{\mathrm{s}} \mathrm{k}_{\mathrm{s}}\right] \sum_{\mathrm{G}=0}^{\infty} \sum_{\mathrm{g}=1}^{\mathrm{M}_{1}}(-1)^{\mathrm{G}} \varphi\left(\mathrm{~L}_{\mathrm{G}}\right)\left[\mathrm{G}!\mathrm{F}_{\mathrm{g}}\right]^{-1} z^{L_{G}}
\end{aligned}
$$

$$
\begin{align*}
& \left(1-\rho-\xi \mathrm{L}_{\mathrm{G}}-\sum_{\mathrm{i}=1}^{\mathrm{s}} \rho_{\mathrm{i}} \mathrm{k}_{\mathrm{i}} ; \theta_{1}, \cdots, \theta_{\mathrm{r}}, 1\right) \quad\left(-\lambda-\mathrm{r}-\mathrm{hL}_{\mathrm{G}}-\sum_{\mathrm{i}=1}^{\mathrm{s}} \mathrm{u}_{\mathrm{i}} \mathrm{k}_{\mathrm{i}} ; \mathrm{h}_{1}, \mathrm{~h}_{2}, \cdots, \mathrm{~h}_{\mathrm{r}}, 0\right) \quad ; \\
& \left(1-\rho-\xi \mathrm{L}_{\mathrm{G}}-\sum_{\mathrm{i}=1}^{\mathrm{S}} \rho_{\mathrm{i}} \mathrm{k}_{\mathrm{i}} ; \theta_{1}, \cdots, \theta_{\mathrm{r}}, \quad 0\right) \quad\left(-1-\lambda-\mathrm{r}-\mathrm{hL}_{\mathrm{G}}-\sum_{\mathrm{i}=1}^{\mathrm{S}} \mathrm{u}_{\mathrm{i}} \mathrm{k}_{\mathrm{i}} ; \mathrm{h}_{1}, \mathrm{~h}_{2}, \cdots, \mathrm{~h}_{\mathrm{r}}, 0\right) ; \\
& \left.\begin{array}{c}
\left(\mathrm{c}_{\mathrm{j}}^{\prime}, \gamma_{\mathrm{j}}^{\prime}\right)_{1, \mathrm{p}_{1}} ; \ldots ;\left(\mathrm{c}_{\mathrm{j}}^{(\mathrm{r})}, \gamma_{\mathrm{j}}^{(\mathrm{r})}\right)_{1, \mathrm{p}_{\mathrm{r}}} ; \\
\left(\mathrm{d}_{\mathrm{j}}^{\prime}, \delta_{\mathrm{j}}^{\prime}\right)_{1, \mathrm{q}_{1}} ; \ldots ;\left(\mathrm{d}_{\mathrm{j}}^{(\mathrm{r})}, \delta_{\mathrm{j}}^{(\mathrm{r})}\right)_{1, \mathrm{q}_{\mathrm{r}}} ;(0,1)
\end{array}\right], \tag{3.2}
\end{align*}
$$

the conditions of validity of (3.2) will follow from those given in (2.2)

4. RESULTS AND DISCUSSION

The general nature of H -function, multivariable H -function and the general class of polynomials involve a large variety of polynomials, the main theorem derived in this paper would at once yield a very large number of results, involving a large variety of polynomials and various special functions. Some of the special cases of our theorem have been already discussed here.

REFERENCES

[1] B. L. J. Braaksma, Asymptotic expansions and analytic continuations for a class of Barnes-integrals, Compostio Math., 15(1983), 339-341.
[2] C. Fox, The G and H-functions as symmetrical Fourier kernels, Trans. Amer. Math. Soc., 98(1961), 395-429.
[3] H. M. Srivastava, A multilinear generating function for the Konhauser sets of bi orthogonal polynomials suggested by the Laguerre polynomials, Pacific J. Math. 117 (1985), 183-191.
[4] H. M. Srivastava, K. C. Gupta and S. P. Goyal, The H-functions of one and two variables with applications, South Asian publishers, New Delhi, Madras (1982).
[5] H. M. Srivastava and R. Panda, Some bilateral generating function for a class of generalized hypergeometric polynomials, J. Raine Angew. Math 283/284 (1996), 265-274.
[6] Kantesh Gupta and Vandana Agarwal, Applications of unified integral formula involving the product of I-function and general polynomials, Journal of the Indian Academy of Mathematics, Indore, 32(1) (2010), 121-130.
[7] L. J. Slater, Generalized hyper geometric functions, Cambridge University Press, (1966).
[8] V.B.L. Chaurasia, A theorem concerning the multivariable H-function, Bull. Inst. Math. Acad. Sinica, 13(2) (1985), 193-196.
[9] V.B.L. Chaurasia and Manisha Gupta, A Theorem concerning a product of two general classes of polynomials and the multivariable H-function, Proc.Indian Acad.Sci. (Math. Sci.), 107(1997), 271-276.

