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Abstract: The aim of this paper is to establish a theorem associated with the product of the Fox’s H-function, the 

multivariable H-function and the general class of polynomials. The results of this theorem are unified in nature 

and producing a very large number of analogous results (new and known) involving simpler special functions and 

polynomials (of one or more variables) as special cases of our result. 
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1.  INTRODUCTION  

The series representation of Fox’s H-function ([1], [2])                        
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The multivariable H-function was defined by H. M. Srivastava and R. Panda [5]   
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Srivastava has defined and introduced the general polynomials [3] 
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where ni            i (    s m    ms) arbitrary positive integers and the coefficients are   [n k    nsks] are arbitrary 

constants, real or complex. On suitably specializing the coefficients A[n k    nsks],  n    ns

m    ms[x    xs] yields a number 

of known polynomials as its special cases.  These include, among others, the Hermite polynomials, the Jacobi 

polynomials, the Lagurre polynomials  the Bessel’s polynomials an  several others   

2.     MAIN THEOREM 
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provided that: 
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Proof:  We start with Slater result ([7], p.75) 
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where  
r
 is given by (2.1) 

Now, multiplying both sides of (2.3) by   
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Interchanging the order of integration and summations which is permissible under the conditions needed in (2.2), we get 

the following result after a little simplification say (I):  
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Using the definitions for general class of polynomials in the series form (1.5), H-function (1.1), and of the multivariable 

H-function (1.2) on the right of (2.4) and then expressing (xk  )
-(            ∑  i ki 

s
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r
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using Srivastava,  Goyal [4] 

and then finally, evaluating the integral on the right hand side with the help of [6], [8] and [9] we arrive at required result 

after a little simplification. 

3.  APPLICATIONS AND SPECIAL CASES 

The most general nature of multivariable H-function, H-function and general class of polynomials a number of integrals 

involving simpler functions can be easily evaluated as special cases of the main theorem:  
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the conditions of validity of (3.1) will follow from those given in (2.2). 

(b) Putting      
 

 
   then   

 

 
  = - v (v is non- negative integer) in (3.1), we get 
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the conditions of validity of (3.2) will follow from those given in (2.2) 

4.    RESULTS AND DISCUSSION 

The general nature of H-function, multivariable H-function and the general class of polynomials involve a large variety of 

polynomials, the main theorem derived in this paper would at once yield a very large number of results, involving a large 

variety of polynomials and various special functions.  Some of the special cases of our theorem have been already 

discussed here.  
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